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The Great Triangle Theorems: Part 1 

I reprise the major triangle theorems largely as a prelude to tackling the last of the great 

triangle theorems, namely Morley’s Theorem. It is salutary that the proof of results which 

have been familiar to me for over half a century did not always flow as fluently from my pen 

as I had expected.  

I am concerned here with theorems which apply for arbitrary triangles – so Pythagoras will 

not appear. I have attempted to use the most elegant proofs in all cases. Morley’s Theorem 

will follow in Part 2. 
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1. Notation and Terminology 

𝐴̅, 𝐵̅, 𝐶̅ denote the position vectors of points A, B, C wrt an arbitrary origin. 

A,B,C will be assumed to be non-colinear, hence there is a unique circle which passes 

through them, called the Circumcircle, the centre of which is the Circumcentre, denoted E.  

𝑎̅, 𝑏̅, 𝑐̅ denote the position vectors of points A, B, C wrt the circumcentre, E. 

Hence 𝑎 = 𝑏 = 𝑐 = the radius of the Circumcircle. 

The length of the side opposite A is denoted 𝐿𝐴 = |𝐶̅ − 𝐵̅|. Similarly 𝐿𝐵, 𝐿𝐶 .  

The three “altitudes” of a triangle are the lines drawn from each vertex which are 

perpendicular to the opposite side (extending the side if necessary). The altitude should also 

terminate on the opposite side (or its extension) so that the magnitude of the altitude vector 

equals the altitude as usually understood, and hence deserve the name.  

The three medians of a triangle are the lines drawn from a vertex to the midpoint of the 

opposite side. 

2. The Orthocentre, H 

Define the Orthocentre, H, by its position vector wrt the Circumcentre, namely, 

     ℎ̅ = 𝑎̅ + 𝑏̅ + 𝑐̅     (1)  

Theorem: The three altitudes of a triangle intersect at a common point and this point is H. 

Proof:  

The vector from C to H is 𝐶𝐻⃗⃗ ⃗⃗  ⃗ = ℎ̅ − 𝑐̅ = 𝑎̅ + 𝑏̅.  

The vector from A to B is 𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑏̅ − 𝑎̅ . 

Hence 𝐶𝐻⃗⃗ ⃗⃗  ⃗ ∙ 𝐴𝐵⃗⃗⃗⃗  ⃗ = (𝑎̅ + 𝑏̅) ∙ (𝑏̅ − 𝑎̅) = 𝑏2 − 𝑎2 = 0, because 𝑎 = 𝑏 = 𝑐. 

Hence 𝐶𝐻⃗⃗ ⃗⃗  ⃗ is perpendicular to side AB and, by construction, passes through C, and hence lies 

along the altitude at C (though not of the same magnitude as the altitude).  

By symmetry, 𝐴𝐻⃗⃗⃗⃗⃗⃗  and 𝐵𝐻⃗⃗⃗⃗⃗⃗  will also lie along their respective altitudes (symmetry being a 

result od that of equ.(1)), and hence H is their common intersection.  QED. 

3. The Centroid, G 

Theorem: The three medians of a triangle meet at a common point, called the Centroid, G.  

Proof: The midpoint, M, of side AB is 
(𝐴̅+𝐵̅)

2
 , because 

(𝐴̅+𝐵̅)

2
− 𝐴̅ = 𝐵̅ −

(𝐴̅+𝐵̅)

2
.  

Hence the median 𝐶𝑀⃗⃗⃗⃗ ⃗⃗ =
(𝐴̅+𝐵̅)

2
− 𝐶̅. 

Defining a point G which is 2/3 of the way along CM from C then  

𝐶𝐺⃗⃗⃗⃗  ⃗ =
2

3
(
(𝐴̅ + 𝐵̅)

2
− 𝐶̅) =

(𝐴̅ + 𝐵̅)

3
−

2

3
𝐶̅ 
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So the position vector of G is  

    𝐶𝐺⃗⃗⃗⃗  ⃗ + 𝐶̅ =
(𝐴̅+𝐵̅)

3
−

2

3
𝐶̅ + 𝐶̅ =

(𝐴̅+𝐵̅+𝐶̅)

3
   (2) 

By the symmetry of this expression it follows that the same point G would be constructed as 

lying two-thirds away along the median from A and also two-thirds of the way along the 

median from B. Hence the medians have a common point of intersection, G, whose position 

vector of G is given by (2).  QED.  

4. E, G and H Are Colinear 

Theorem: E, G and H are colinear. 

Proof: This follows immediately because, if the Circumcentre is adopted as the origin than 

the position of G is given from (2) by  𝐸𝐹⃗⃗⃗⃗  ⃗ = (𝑎̅ + 𝑏̅ + 𝑐̅)/3 which is proportional to (i.e., 

parallel to) 𝐸𝐻⃗⃗⃗⃗⃗⃗ = (𝑎̅ + 𝑏̅ + 𝑐̅), from (1).  QED. 

5. The Circumcentre, E 

Theorem: The Circumcentre, E, is the common point of intersection of the three 

perpendicular bisectors of the triangle’s sides.  

Proof: The equation of a line may be written 𝑟̅ = 𝑢̅ + 𝜆𝑣̅ where 𝑢̅ is an arbitrary point on the 

line and 𝑣̅ is any vector parallel to the line. All points, 𝑟̅, on the line may be expressed in this 

way for some 𝜆 whilst 𝑢̅ and 𝑣̅ remain fixed.  

We know from §2 that 𝐶𝐻⃗⃗ ⃗⃗  ⃗ = 𝑎̅ + 𝑏̅ is perpendicular to side AB, and we know from §3 that 

the midpoint of side AB is 
(𝐴̅+𝐵̅)

2
. Hence the equation of the perpendicular bisector of AB can 

be written 𝑟̅ =
(𝐴̅+𝐵̅)

2
+ 𝜆(𝑎̅ + 𝑏̅). Shifting the origin of 𝑟̅ to the Circumcentre, E, this can be 

written 𝑟̅ =
(𝑎̅+𝑏̅)

2
+ 𝜆(𝑎̅ + 𝑏̅) = 𝜆′(𝑎̅ + 𝑏̅) where 𝜆′ = 𝜆 +

1

2
. 

In the same way the perpendicular bisector of side BC is 𝑟̅ = 𝜇′(𝑏̅ + 𝑐̅) and the perpendicular 

bisector of CA is 𝑟̅ = 𝜈′(𝑐̅ + 𝑎̅).  

The three lines 𝑟̅ = 𝜆′(𝑎̅ + 𝑏̅), 𝑟̅ = 𝜇′(𝑏̅ + 𝑐̅) and 𝑟̅ = 𝜈′(𝑐̅ + 𝑎̅) have a common point of 

intersection iff there are values of 𝜆′, 𝜇′, 𝜈′ such that all three give the same result for 𝑟̅. 

Trivially there is such a solution, namely 𝜆′ = 𝜇′, = 𝜈′ = 0 which gives the common point of 

intersection of the perpendicular bisectors to be 𝑟̅ = 0. Recalling that we shifted the origin to 

the Circumcentre, this means that the Circumcentre is the common point of intersection of the 

three perpendicular bisectors.  QED. 

6. Coordinates of the Circumcentre 

There is no neat vector formula for the position of the Circumcentre, but its Cartesian 

coordinates can be found as follows. The perpendicular bisector of side AB can be written 

𝑟̅ =
1

2
(𝐴̅ + 𝐵̅) + 𝜆𝑣̅ where 𝑣̅ is perpendicular to 𝐵̅ − 𝐴̅ and hence can be written 𝑣̅ =

(Δ𝑦, −Δ𝑥) where 𝐵̅ − 𝐴̅ = (Δ𝑥, Δ𝑦). Writing the perpendicular bisector of another side in the 

corresponding way and solving for their intersection leads, after a little algebra, to, 

𝐸𝑥 = [(𝐴𝑥
2 + 𝐴𝑦

2)(𝐵𝑦 − 𝐶𝑦) + (𝐵𝑥
2 + 𝐵𝑦

2)(𝐶𝑦 − 𝐴𝑦) + (𝐶𝑥
2 + 𝐶𝑦

2)(𝐴𝑦 − 𝐵𝑦)]/𝐷 
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𝐸𝑦 = −[(𝐴𝑥
2 + 𝐴𝑦

2)(𝐵𝑥 − 𝐶𝑥) + (𝐵𝑥
2 + 𝐵𝑦

2)(𝐶𝑥 − 𝐴𝑥) + (𝐶𝑥
2 + 𝐶𝑦

2)(𝐴𝑥 − 𝐵𝑥)]/𝐷 

where 𝐷 = 𝐴𝑥(𝐵𝑦 − 𝐶𝑦) + 𝐵𝑥(𝐶𝑦 − 𝐴𝑦) + 𝐶𝑥(𝐴𝑦 − 𝐵𝑦) 

7. The Incentre 

Theorem: The three bisectors of the angles at A, B and C intersect at a common point, I. 

Proof: The unit vector along side AB, from A towards B, is 
𝐵̅−𝐴̅

𝐿𝐶
, and that from A to C is 

𝐶̅−𝐴̅

𝐿𝐵
. 

The direction of the bisector at A is thus the same as 
𝐵̅−𝐴̅

𝐿𝐶
+

𝐶̅−𝐴̅

𝐿𝐵
 (though not normalised). 

Hence any point on the bisector of A is given by 𝑟̅ = 𝐴̅ + 𝜆 (
𝐵̅−𝐴̅

𝐿𝐶
+

𝐶̅−𝐴̅

𝐿𝐵
). The bisector at B is 

therefore 𝑟̅ = 𝐵̅ + 𝜇 (
𝐴̅−𝐵̅

𝐿𝐶
+

𝐶̅−𝐵̅

𝐿𝐴
), and that at C is 𝑟̅ = 𝐶̅ + 𝜈 (

𝐴̅−𝐶̅

𝐿𝐵
+

𝐵̅−𝐶̅

𝐿𝐴
). 

Equating for the intersection of the bisectors at A and B gives, 

𝐴̅ + 𝜆 (
𝐵̅ − 𝐴̅

𝐿𝐶
+

𝐶̅ − 𝐴̅

𝐿𝐵
) = 𝐵̅ + 𝜇 (

𝐴̅ − 𝐵̅

𝐿𝐶
+

𝐶̅ − 𝐵̅

𝐿𝐴
) 

Rearranging:  

𝐴̅ − 𝐵̅ + (𝜆 + 𝜇)
𝐵̅ − 𝐴̅

𝐿𝐶
= (1 −

(𝜆 + 𝜇)

𝐿𝐶
) (𝐴̅ − 𝐵̅) = +𝜇

𝐶̅ − 𝐵̅

𝐿𝐴
− 𝜆

𝐶̅ − 𝐴̅

𝐿𝐵
 

For this to be possible we must have 
𝜇

𝐿𝐴
=

𝜆

𝐿𝐵
 and so, 

(1 −
(𝜆 + 𝜇)

𝐿𝐶
) (𝐴̅ − 𝐵̅) =

𝜇

𝐿𝐴

(𝐴̅ − 𝐵̅) 

i.e.,   𝐿𝐶𝐿𝐴 − 𝐿𝐴(𝜆 + 𝜇) = 𝐿𝐶𝐿𝐴 − 𝐿𝐴𝜇 − 𝐿𝐵𝜇 = 𝜇𝐿𝐶   

so that,    𝜇 =
𝐿𝐶𝐿𝐴

𝐿𝐴+𝐿𝐵+𝐿𝐶
      (3b) 

gives the intersection point between the bisectors at A and B. By symmetry we immediately 

have that the same point is given also by, 

    𝜆 =
𝐿𝐵𝐿𝐶

𝐿𝐴+𝐿𝐵+𝐿𝐶
      (3a) 

But also by symmetry we will find that the bisector at C intersects with either that at A or that 

at B for, 

    𝜈 =
𝐿𝐴𝐿𝐵

𝐿𝐴+𝐿𝐵+𝐿𝐶
      (3c) 

Hence there is a common intersection point given equivalently by (3a), (3b) or (3c). This 

defines the Incentre, I. 

There is a more elegant proof, given in §12 below, but this requires some trigonometric 

formulae to be derived first.  

8. The Inscribed Circle 

Theorem: The Incentre is the centre of a circle which is tangential to all three sides of the 

triangle, and hence is the largest circle which fits inside the triangle. 
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Proof: Any point on the bisector at A has the same perpendicular distance from sides AB and 

AC, by symmetry. Any point on the bisector at B has the same perpendicular distance from 

sides BA and BC. Hence, the Incentre has the same perpendicular distance from all three 

sides. The circle of radius equal to this distance is therefore tangential to all three sides. 

QED. 

9. The Cosine Rule 

The familiar “Cosine Rule” follows immediately from the vector dot product. For our triangle 

with sides 𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑏′̅, 𝐴𝐶⃗⃗⃗⃗  ⃗ = 𝑐 ′̅ the third side is 𝐵𝐶⃗⃗⃗⃗  ⃗ = 𝑐 ′̅ − 𝑏′̅. Hence the squared length of BC 

is 𝐿𝐴
2 = |𝑐 ′̅ − 𝑏′̅|

2
= |𝑐 ′̅ |2 + |𝑏′̅|

2
− 2𝑏′̅ ∙ 𝑐 ′̅ = 𝐿𝐵

2 + 𝐿𝐶
2 − 2𝐿𝐵𝐿𝐶𝑐𝑜𝑠(𝜃𝐴) where 𝜃𝐴 is the 

angle at A, i.e., the angle between 𝑏′̅ and 𝑐 ′̅. This is the Cosine Rule which determines the 

length of one side in terms of the lengths of the other two and the cosine of the angle between 

them. 

10. The Sine Rule 

The area of the triangle is half the magnitude of the cross product between any two sides, i.e., 

Area =  
1

2
|𝑏′̅ × 𝑐 ′̅| =

1

2
𝐿𝐵𝐿𝐶𝑠𝑖𝑛(𝜃𝐴) =

1

2
𝐿𝐶𝐿𝐴𝑠𝑖𝑛(𝜃𝐵) =

1

2
𝐿𝐴𝐿𝐵𝑠𝑖𝑛(𝜃𝐶)  

Rearranging gives the familiar “Sine Rule”:  

     
𝐿𝐴

𝑠𝑖𝑛(𝜃𝐴)
=

𝐿𝐵

𝑠𝑖𝑛(𝜃𝐵)
=

𝐿𝐶

𝑠𝑖𝑛(𝜃𝐶)
    (4) 

where the side of length 𝐿𝐴 is opposite the angle 𝜃𝐴, etc. 

11. The Bisector-Divider Rule 

Referring to Figure 1, if BK bisects the angle FBC (each half being 𝛽) then the following 

equality between the ratios of sides applies, 

      
𝐵𝐶

𝐵𝐹
=

𝐶𝐼

𝐼𝐹
      (5) 

This can be deduced by applying the Sine Rule, (4), to triangles BIF and BCI giving, 

   
𝐹𝐼

𝑠𝑖𝑛𝛽
=

𝐹𝐵

𝑠𝑖𝑛𝜑
 and 

𝐼𝐶

𝑠𝑖𝑛𝛽
=

𝐵𝐶

𝑠𝑖𝑛(𝜋−𝜑)
=

𝐵𝐶

𝑠𝑖𝑛𝜑
 

which can be rearranged to give (5). Conversely, if (5) is known, then the dividing line must 

be a bisector.  

Figure 1 

 

 

 

 

 

 

 

A 

B 

C 

F 
D 

I 

K 

𝛽 𝛽 

𝜑 
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12. The Incentre Revisited 

Referring to Figure 1, in addition to (5) if we apply the same rule to triangles ACF, where AD 

is defined as the bisector of angle BAC, then we have also, 

      
𝐴𝐶

𝐴𝐹
=

𝐶𝐼

𝐼𝐹
 

But this together with (5) gives 
𝐴𝐶

𝐴𝐹
=

𝐵𝐶

𝐵𝐹
  which gives 

𝐴𝐶

𝐵𝐶
=

𝐴𝐹

𝐵𝐹
 which establishes that CF is the 

bisector of angle ACB. That CF also passes through point I is established by §8.  QED.  

This is the more elegant proof of the Incentre, but it requires §10 and §11 to be established 

first. 

13. Centre of Gravity 

We now envisage a lamina, or plate, of uniform surface density, 𝜌, out of which some 

arbitrary shape is cut. (We will restrict to a triangle later).  

The “Centre of Gravity” (cg) is that point on the shape such that the shape will balance on a 

knife edge passing through the point in any direction.  

Here, “balance” means the net moment due to gravity is zero. 

The moment about a given axis due to a small element of area 𝛿𝐴 is 𝜌𝑔𝐷𝛿𝐴 where 𝐷 is the 

perpendicular distance from the axis. 

Assume that we measure the position of the element of area, 𝑟̅, from an origin lying on the 

axis at position 𝑠̅, and suppose the direction of the axis is given by a unit vector 𝑛̂. Then the 

total moment on the shape is, 

   𝑀̅ = 𝜌𝑔 ∫(𝑟̅ × 𝑛̂) 𝑑𝐴 = 𝜌𝑔(∫ 𝑟̅ 𝑑𝐴) × 𝑛̂    (6) 

To balance wrt a given orientation of knife-edge, 𝑛̂, requires only that ∫ 𝑟̅ 𝑑𝐴 is parallel to 𝑛̂. 

However, if balance is to be possible for any 𝑛̂, then we require ∫ 𝑟̅ 𝑑𝐴 = 0. This defines the 

location of the cg. 

Theorem: If the net moment is zero about two non-colinear axes, then their intersection is the 

cg and the net moment is zero about any axis passing through that point. 

Proof: Consider the intersection point of the two axes and wrt a Cartesian coordinate system 

whose origin is at that point define 𝑀𝑥 = ∫𝑥 𝑑𝐴 and 𝑀𝑦 = ∫𝑦 𝑑𝐴. If the first axis is at an 

angle 𝜃 wrt the x-axis then the perpendicular distance of the area element from this axis is 

𝐷 = 𝑦𝑐𝑜𝑠𝜃 − 𝑥𝑠𝑖𝑛𝜗. Hence the moment about this axis is 𝑀 = 𝑀𝑥𝑐𝑜𝑠𝜃 + 𝑀𝑦𝑠𝑖𝑛𝜃. A 

similar expression holds for the second axis in terms of its orientation, 𝜃′, i.e.,                  

𝑀′ = 𝑀𝑥𝑐𝑜𝑠𝜃
′ + 𝑀𝑦𝑠𝑖𝑛𝜃′. Because 𝑀′ = 𝑀 = 0 we conclude that 𝑀𝑥 = 𝑀𝑦 = 0 and 

hence, as 𝑀 = 𝑀𝑥𝑐𝑜𝑠𝜃 + 𝑀𝑦𝑠𝑖𝑛𝜃 holds for any other axis, that the moment about any axis is 

zero. This establishes that the point of intersection of the initial two axes must be the cg. 

QED. 

14. Theorem: For a Triangle, the Centroid is the Centre of Gravity 

Proof: Consider initially an axis parallel to one side. If the triangle is oriented with its base 

along the x-axis then consider an axis parallel to the x-axis and at a height  𝑦 = 𝑌/3 above its 
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base, where 𝑌 is the height of the triangle. (Hence, by (2), the axis passes through the 

centroid).  

At any 𝑦 position, the width of the triangle can be written as 𝐿 (1 −
𝑦

𝑌
) where 𝐿 is the length 

of its base which lies at 𝑦 = 0. The moment about the axis is thus, (ignoring the constant 

𝜌𝑔), 

𝑀 = ∫ (𝑦 −
𝑌

3
)𝑑𝐴

𝑌

0

= 𝐿 ∫ (𝑦 −
𝑌

3
) (1 −

𝑦

𝑌
) 𝑑𝑦 =

𝑌

0

𝐿 ∫ (
4

3
𝑦 −

𝑦2

𝑌
−

𝑌

3
)𝑑𝑦

𝑌

0

= 𝐿 (
4

3

𝑌2

2
−

𝑌2

3
−

𝑌2

3
) = 0 

Hence the cg does lie on the axis in question. 

By repeating the same calculation for an axis parallel to one of the other sides, and one-third 

of the height wrt to that base, the total moment must again be zero, and hence their 

intersection, at 
(𝐴̅+𝐵̅+𝐶̅)

3
, must be the cg.  So, the cg is the centroid.  QED. 

15. Moment of Inertia 

We envisage either a shape cut from a uniform surface density plate, or, alternatively a 

prismatic body aligned with the z-axis whose x,y cross-section is constant.  

Other than a constant facto equal to the material density times the thickness (or z-direction 

length) the moment of inertia about any axis lying in the x,y plane is the same as the second 

moment of area. Similar to (4) we defined, 

     𝐼 = ∫|𝑟̅ × 𝑛̂|2 𝑑𝐴     (7) 

where 𝑟̅ is the position vector of the area element from any point lying on the axis in question 

(it makes no difference to I which point, as long as it lies on the axis).  

Parallel Axis Theorem: The moment of inertia (second moment of area) about an axis which 

is a perpendicular distance 𝑠 from the cg equals the moment of inertia about a parallel axis 

through the cg plus 𝑠2𝐴, where 𝐴 is the total cross-section.  

Proof: Define vector 𝑠̅ to be perpendicular to the axis and of length 𝑠. Hence the vector to the 

area element wrt an origin on the axis in question is 𝑟 ′̅ = 𝑟̅ − 𝑠̅, where 𝑟̅ is the position of the 

same area element wrt to the parallel axis through the cg. Hence, 

𝐼 = ∫|𝑟 ′̅ × 𝑛̂|2 𝑑𝐴 = ∫|(𝑟̅ − 𝑠̅) × 𝑛̂|2 𝑑𝐴 = ∫(|𝑟̅ × 𝑛̂|2 + 𝑠2) 𝑑𝐴 − 2(𝑠̅ × 𝑛̂) ∙ ∫(𝑟̅ × 𝑛̂) 𝑑𝐴 

But the vector integral in the last term is zero because we are assuming that 𝑟̅ is measured 

from the axis passing through the cg (see §13). Hence we get, 

𝐼 = 𝐼𝑐𝑔 + 𝑠2𝐴 

QED. 
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The Polar Moment of Inertia about a given point is the moment of inertia about the z-axis 

through that point and hence is given by 𝐼𝑝 = ∫𝑟2𝑑𝐴, where 𝑟 is the distance from the point 

to the area element. 

Perpendicular Axis Theorem: The polar moment of inertia is equal to the sum of the in-

plane moments of inertia about Cartesian directions x and y (irrespective of the orientation of 

the x,y coordinate system). 

Proof: 𝐼𝑝 = ∫ 𝑟2𝑑𝐴 = ∫(𝑥2 + 𝑦2)𝑑𝐴 = 𝐼𝑥 + 𝐼𝑌    QED. 

 

Part 2 will address the last of the great triangle theorems, remarkably only discovered in 

1899: Morley’s Theorem. 

 

Exercises for the Reader: Properties of the Orthocentre 

These theorems have been taken from Orthocenter | Brilliant Math & Science Wiki. I invite 

you to attempt to prove them.  

[1] Defining a new triangle from any two of the original vertices plus their Orthocentre, the 

Orthocentre of the new triangle is the third vertex. 

[2] The reflection of the Orthocentre over any of the three sides lies on the Circumcircle of 

the triangle.  

(A corollary of that is that, using a circular piece of paper and drawing an inscribed 

triangle on it, then after folding the paper inwards along the three edges the three arcs 

meet at the Orthocentre of the triangle).  

[3] The angle ABC is supplementary to the angle AHC, i.e. they add to 180o. This holds for 

all three angles, of course.  

[4] The Circumcircle of the triangle formed by any two points of a triangle and its 

Orthocentre has the same radius as the circumcircle of the original triangle.  

[5] If any point on the Circumcircle is reflected in turn over the three sides, resulting in three 

new points, these three points and the Orthocentre are collinear.  

[6] The reflections of the triangle’s altitudes over the angle bisectors intersect at the 

Circumcentre.  

 

https://brilliant.org/wiki/triangles-orthocenter/

